Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(10): 105240, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690682

RESUMEN

Upstream stimulating factors (USFs), including USF1 and USF2, are key components of the transcription machinery that recruit coactivators and histone-modifying enzymes. Using the classic basic helix-loop-helix leucine zipper (bHLH-LZ) domain, USFs bind the E-box DNA and form tetramers that promote DNA looping for transcription initiation. The structural basis by which USFs tetramerize and bind DNA, however, remains unknown. Here, we report the crystal structure of the complete bHLH-LZ domain of USF2 in complex with E-box DNA. We observed that the leucine zipper (LZ) of USF2 is longer than that of other bHLH-LZ family transcription factors and that the C-terminus of USF2 forms an additional α-helix following the LZ region (denoted as LZ-Ext). We also found the elongated LZ-Ext facilitates compact tetramer formation. In addition to the classic interactions between the basic region and DNA, we show a highly conserved basic residue in the loop region, Lys271, participates in DNA interaction. Together, these findings suggest that USF2 forms a tetramer structure with a bent elongated LZ-Ext region, providing a molecular basis for its role as a key component of the transcription machinery.

2.
Proc Natl Acad Sci U S A ; 120(7): e2213670120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749723

RESUMEN

Autophagy supports the fast growth of established tumors and promotes tumor resistance to multiple treatments. Inhibition of autophagy is a promising strategy for tumor therapy. However, effective autophagy inhibitors suitable for clinical use are currently lacking. There is a high demand for identifying novel autophagy drug targets and potent inhibitors with drug-like properties. The transcription factor EB (TFEB) is the central transcriptional regulator of autophagy, which promotes lysosomal biogenesis and functions and systematically up-regulates autophagy. Despite extensive evidence that TFEB is a promising target for autophagy inhibition, no small molecular TFEB inhibitors were reported. Here, we show that an United States Food and Drug Administration (FDA)-approved drug Eltrombopag (EO) binds to the basic helix-loop-helix-leucine zipper domain of TFEB, specifically the bottom surface of helix-loop-helix to clash with DNA recognition, and disrupts TFEB-DNA interaction in vitro and in cellular context. EO selectively inhibits TFEB's transcriptional activity at the genomic scale according to RNA sequencing analyses, blocks autophagy in a dose-dependent manner, and increases the sensitivity of glioblastoma to temozolomide in vivo. Together, this work reveals that TFEB is targetable and presents the first direct TFEB inhibitor EO, a drug compound with great potential to benefit a wide range of cancer therapies by inhibiting autophagy.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Preparaciones Farmacéuticas/metabolismo , Autofagia/genética , Línea Celular Tumoral , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Expresión Génica , Lisosomas/metabolismo
3.
Cell Res ; 33(1): 55-70, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36588115

RESUMEN

Microphthalmia transcription factor (MITF) regulates melanocyte development and is the "lineage-specific survival" oncogene of melanoma. MITF is essential for melanoma initiation, progression, and relapse and has been considered an important therapeutic target; however, direct inhibition of MITF through small molecules is considered impossible, due to the absence of a ligand-binding pocket for drug design. Here, our structural analyses show that the structure of MITF is hyperdynamic because of its out-of-register leucine zipper with a 3-residue insertion. The dynamic MITF is highly vulnerable to dimer-disrupting mutations, as we observed that MITF loss-of-function mutations in human Waardenburg syndrome type 2 A are frequently located on the dimer interface and disrupt the dimer forming ability accordingly. These observations suggest a unique opportunity to inhibit MITF with small molecules capable of disrupting the MITF dimer. From a high throughput screening against 654,650 compounds, we discovered compound TT-012, which specifically binds to dynamic MITF and destroys the latter's dimer formation and DNA-binding ability. Using chromatin immunoprecipitation assay and RNA sequencing, we showed that TT-012 inhibits the transcriptional activity of MITF in B16F10 melanoma cells. In addition, TT-012 inhibits the growth of high-MITF melanoma cells, and inhibits the tumor growth and metastasis with tolerable toxicity to liver and immune cells in animal models. Together, this study demonstrates a unique hyperdynamic dimer interface in melanoma oncoprotein MITF, and reveals a novel approach to therapeutically suppress MITF activity.


Asunto(s)
Melanoma , Microftalmía , Animales , Humanos , Factores de Transcripción/metabolismo , Microftalmía/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Regulación de la Expresión Génica , Proteínas Oncogénicas/genética , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
4.
Biochem Biophys Res Commun ; 569: 41-46, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34225079

RESUMEN

The transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) is a member of the microphthalmia (MiT/TFE) transcription factor family. Dysregulation of TFE3 due to chromosomal abnormalities is associated with a subset of human renal cell carcinoma. Little structural information of this key transcription factor has been reported. In this study, we determined the crystal structure of the helix-loop-helix leucine zipper (HLH-Lz) domain of human TFE3 to a resolution of 2.6 Å. The HLH-Lz domain is critical for the dimerization and function of TFE3. Our structure showed that the conserved HLH region formed a four-helix bundle structure with a predominantly hydrophobic core, and the leucine zipper region contributed to the function of TFE3 by promoting dimer interaction and providing partner selectivity. Together, our results elucidated the dimerization mechanism of this important transcription factor, providing the structural basis for the development of inhibiting strategies for treating TFE3 dysregulated diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Secuencias Hélice-Asa-Hélice , Leucina Zippers , Conformación Proteica , Multimerización de Proteína , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Cristalografía por Rayos X , Regulación de la Expresión Génica , Células HeLa , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Modelos Moleculares
5.
Biochem Biophys Res Commun ; 554: 83-88, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33784510

RESUMEN

Aminoacyl-tRNA synthetases (AARSs) catalyze the ligation of amino acids to their cognate tRNAs and therefore play an essential role in protein biosynthesis in all living cells. The KARS gene in human encodes both cytosolic and mitochondrial lysyl-tRNA synthetase (LysRS). A recent study identified a missense mutation in KARS gene (c.517T > C) that caused autosomal recessive nonsyndromic hearing loss. This mutation led to a tyrosine to histidine (YH) substitution in both cytosolic and mitochondrial LysRS proteins, and decreased their aminoacylation activity to different levels. Here, we report the crystal structure of LysRS YH mutant at a resolution of 2.5 Å. We found that the mutation did not interfere with the active center, nor did it cause any significant conformational changes in the protein. The loops involved in tetramer interface and tRNA anticodon binding site showed relatively bigger variations between the mutant and wild type proteins. Considering the differences between the cytosolic and mitochondrial tRNAlyss, we suggest that the mutation triggered subtle changes in the tRNA anticodon binding region, and the interferences were further amplified by the different D and T loops in mitochondrial tRNAlys, and led to a complete loss of the aminoacylation of mitochondrial tRNAlys.


Asunto(s)
Sordera/enzimología , Lisina-ARNt Ligasa/química , Mutación , Aminoacilación , Anticodón , Cristalografía por Rayos X , Sordera/genética , Sordera/metabolismo , Sordera/patología , Predisposición Genética a la Enfermedad , Humanos , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/aislamiento & purificación , Lisina-ARNt Ligasa/metabolismo , Mitocondrias/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Biosíntesis de Proteínas , Elementos Estructurales de las Proteínas , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
6.
Biochem Biophys Res Commun ; 549: 164-170, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33676185

RESUMEN

General control nonderepressible 2 (GCN2) is a serine/threonine protein kinase, detecting a variety of stresses including amino acid starvation, reactive oxygen species, etc. in eukaryotic cells. Activation of GCN2 requires the interaction of the N-terminal RWD domain with the upstream GCN1 protein and the dimerization by the kinase domain. In this study, we determined two crystal structures of the RWD domain of human GCN2 in two different crystal packing modes. These two different crystal structures reveal a same dimer of the RWD domain, which has not been reported in previous studies. We further confirmed this novel dimer interaction in solution using gel filtration experiments, and in human embryonic kidney (HEK) 293 cells using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (co-IP) assays. Together, this study discovers a potential protein-protein interface on the RWD domain of human GCN2, and suggests a possible regulation between the interaction of GCN1 and the formation of GCN2 dimer.


Asunto(s)
Cristalografía por Rayos X , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Modelos Moleculares , Dominios Proteicos , Soluciones
7.
Nat Commun ; 10(1): 4664, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604935

RESUMEN

Signal transduction systems enable organisms to monitor their external environments and accordingly adjust the cellular processes. In mast cells, the second messenger Ap4A binds to the histidine triad nucleotide-binding protein 1 (HINT1), disrupts its interaction with the microphthalmia-associated transcription factor (MITF), and eventually activates the transcription of genes downstream of MITF in response to immunostimulation. How the HINT1 protein recognizes and is regulated by Ap4A remain unclear. Here, using eight crystal structures, biochemical experiments, negative stain electron microscopy, and cellular experiments, we report that Ap4A specifically polymerizes HINT1 in solution and in activated rat basophilic leukemia cells. The polymerization interface overlaps with the area on HINT1 for MITF interaction, suggesting a possible competitive mechanism to release MITF for transcriptional activation. The mechanism depends precisely on the length of the phosphodiester linkage of Ap4A. These results highlight a direct polymerization signaling mechanism by the second messenger.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Mastocitos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Línea Celular , Cristalografía por Rayos X , Técnicas de Silenciamiento del Gen , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Polimerizacion , Estructura Terciaria de Proteína , Transducción de Señal
8.
J Biol Chem ; 294(13): 4775-4783, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30733335

RESUMEN

Multi-aminoacyl-tRNA synthetase complex (MSC) is the second largest machinery for protein synthesis in human cells and also regulates multiple nontranslational functions through its components. Previous studies have shown that the MSC can respond to external signals by releasing its components to function outside it. The internal assembly is fundamental to MSC regulation. Here, using crystal structural analyses (at 1.88 Å resolution) along with molecular modeling, gel-filtration chromatography, and co-immunoprecipitation, we report that human lysyl-tRNA synthetase (LysRS) forms a tighter assembly with the scaffold protein aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) than previously observed. We found that two AIMP2 N-terminal peptides form an antiparallel scaffold and hold two LysRS dimers through four binding motifs and additional interactions. Of note, the four catalytic subunits of LysRS in the tightly assembled complex were all accessible for tRNA recognition. We further noted that two recently reported human disease-associated mutations conflict with this tighter assembly, cause LysRS release from the MSC, and inactivate the enzyme. These findings reveal a previously unknown dimension of MSC subcomplex assembly and suggest that the retractility of this complex may be critical for its physiological functions.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Complejos Multiproteicos/química , Proteínas Nucleares/química , Multimerización de Proteína , Secuencias de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA